This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

METAL AND ORGANOMETAL COMPLEXES OF OXY-AND THIOPHOSPHORUS ACIDS. PART II. REACTIONS OF O,O-ALKYLENE DITHIOPHOSPHORIC ACIDS WITH TITANIUM(IV) ISOPROPOXIDE

J. S. Yadava; R. K. Mehrotraa; G. Srivastava

^a Department of Chemistry, University of Rajasthan, Jaipur, India

To cite this Article Yadav, J. S. , Mehrotra, R. K. and Srivastava, G.(1987) 'METAL AND ORGANOMETAL COMPLEXES OF OXY-AND THIOPHOSPHORUS ACIDS. PART II. REACTIONS OF O,O-ALKYLENE DITHIOPHOSPHORIC ACIDS WITH TITANIUM(IV) ISOPROPOXIDE', Phosphorus, Sulfur, and Silicon and the Related Elements, 34:1,21-30

To link to this Article: DOI: 10.1080/03086648708074303 URL: http://dx.doi.org/10.1080/03086648708074303

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

METAL AND ORGANOMETAL COMPLEXES OF OXY- AND THIOPHOSPHORUS ACIDS. PART II. REACTIONS OF O,O-ALKYLENE DITHIOPHOSPHORIC ACIDS WITH TITANIUM(IV) ISOPROPOXIDE

J. S. YADAV, R. K. MEHROTRA and G. SRIVASTAVA* Department of Chemistry, University of Rajasthan, Jaipur-302004 India

(Received January 6, 1987; in final form March 14, 1987)

Replacement reactions of titanium(IV) isopropoxide with O,O-alkylene dithiophosphoric acids proceed in 1:1 and 1:2 molar ratios in refluxing benzene to yield tri- and diisopropoxytitanium alkylene dithiophosphates, $(OPr^i)_{4-n}Ti(S_2POGO)_n$ (n=1 and 2; $G=-CMe_2CMe_2--, -CH_2CMe_2CH_2--, -CH_2CEt_2CH_2--, and -CHMeCHMe--) as hydrolysable, orange solids or viscous liquids, soluble in common organic solvents and monomeric in nature. Further replacement of isopropoxy groups to give tris and tetrakis dithiophosphates does not occur. The isopropoxy groups in the mixed derivatives, however, can be replaced by tert-butoxy groups. All these compounds have been characterized by elemental analyses, molecular weight determinations and IR and NMR (<math>^1H$, ^{13}C and ^{31}P) spectral data which are consistent with bidentate chelating behaviour of the dithiophosphate ligands.

INTRODUCTION

O,O-Dialkyl and alkylene dithiophosphoric acids behave as versatile bidentate dithio ligands and form a variety of stable complexes with transition^{1,2} as well as nontransition³⁻⁶ elements. A perusal of literature reveals that no systematic work has been carried out on titanium(IV) dithiophosphates although a marked tendency of titanium to form stable complexes with other bidentate sulphur donor ligands, such as N,N-dialkyl dithiocarbamic^{7,8} and O-alkyl dithiocarbonic⁹ acids is well documented. In continuation of our recent studies on reactions of titanium tetrachloride with O,O-dialkyl and alkylene dithiophosphate salts, ¹⁰ we report the reactions of titanium tetraisopropoxide with O,O-alkylene dithiophosphoric acids in this communication. The acids chosen for these studies are 5-membered tetramethyl- and 1,2-dimentyl-ethylene dithiophosphoric acids as well as 6-membered 2,2-dimethyl- and 2,2-diethyl-trimethylene dithiophosphoric acids, which, unlike their acyclic analogues, can be obtained in high purity.

^{*} Author to whom correspondence should be addressed.

RESULTS AND DISCUSSION

Mixed isopropoxide alkylene dithiophosphates of titanium(IV) have been synthesized in quantitative yield by the reactions of titanium tetraisopropoxide with alkylene dithiophosphoric acids in 1:1 and 1:2 molar ratio in refluxing benzene.

$$Ti(OPr^{i})_{4} + n HS_{2}POGO \rightarrow (Pr^{i}O)_{4-n}Ti(S_{2}POGO)_{n} + Pr^{i}OH$$

$$n = 1, 2$$

$$(G = -CMe_{2}CMe_{2}-, -CH_{2}CMe_{2}CH_{2}-, -CH_{2}CEt_{2}CH_{2}-$$
and -CHMeCHMe--)

These replacement reactions are quite slow and have to be pushed to completion by continuously removing the liberated isopropanol azeotropically with the solvent. The colour of the reaction mixture changes from colourless to dark orange with the progress of the reaction. The disubstituted derivatives are the final products even under forcing conditions, e.g. excess of dithiophosphoric acid and refluxing toluene medium. In contrast to this, titanium tetrachloride, shows higher reactivity and, with alkali metal or ammonium salts of dithiophosphoric acids, all of its chlorines are replaced. ¹⁰

The mixed isopropoxytitanium alkylene dithiophosphates are yellow orange solids or viscous liquids soluble in benzene, chloroform, carbon tetrachloride and dimethyl sulphoxide. In contrast to the mixed chloride alkylene dithiophosphates $\text{Cl}_{4-n}\text{Ti}(S_2\text{POGO})_n$, which slowly change into intractable solids, these compounds are more stable and do not show any change in their spectroscopic (IR and NMR) properties even after keeping for long time. These derivatives are highly sensitive towards moisture. Cryoscopic molecular weight determination (Table I) in benzene of one representative example of both the series of isopropoxytitanium dithiophosphates indicates the monomeric nature of these complexes.

The derivatives, tri-tert-butoxytitanium tetramethylethylene dithiophosphate and di-tert-butoxytitanium bis (tetramethylethylene dithiophosphate) have also been obtained by the reactions of the corresponding isopropoxy derivatives with excess of tert-butanol in refluxing benzene with slow azeotropic fractionation of the liberated isopropanol.

$$(Pr^{i}O)_{4-n}Ti(S_{2}\overrightarrow{POCMe_{2}CMe_{2}O})_{n} + 4 - n Bu^{t}OH$$

$$\rightarrow (Bu^{t}O)_{4-n}Ti(S_{2}\overrightarrow{POCMe_{2}CMe_{2}O})_{n} + 4 - n Pr^{i}OH$$

$$n = 1, 2$$

These tert-butoxy derivatives show close resemblance with the isopropoxy derivatives in their properties.

IR Spectra:

The IR spectral assignments (Table II) are based on earlier reports on other metal dithiophosphates^{2,11} and on titanium-sulphur bonded compounds. ^{12,13}

Downloaded At: 20:08 29 January 2011

Synthesis and properties of mixed isopropoxytitanium(IV) alkylenedithiophosphates TABLE I

Mologulas	weight	Found (Calcd.)	453	(435)	581	(587)	428	(421)										
alyses	(Calc.)	s	14.74	(14.68)	21.80	(21.77)	15.30	(15.16)	22.99	(22.86)	14.26	(14.22)	20.82	(20.78)	15.75	(15.69)	24.12	(24.06)
% Analyses	Found (Calc.)	Ë	11.10	(10.98)	8.20	(8.14)	11.50	(11.35)	8.65	(8.55)	10.73	(10.64)	7.85	(7.71)	11.60	(11.74)	9.15	(00.6)
	Pr'OH	Liberated Found (Calc.)	0.32	(0.33)	0.45	(0.46)	0.24	(0.24)	0.80	(0.81)	0.27	(0.28)	0.47	(0.48)	0.35	(0.35)	0.55	(0.55)
		Product*/Physical State	(Pr'O) ₃ TiS ₂ POCMe ₂ CMe ₂ Ò	Orange semi-solid	$(Pr^iO)_2Ti(S_2POCMe_2CMe_2O)_2$	Yellow semi solid†	(Pr'O), TiS2 POCH2CMe2CH2O	Red semi-solid	$(Pr'O)_2Ti(S_2 POCH_2CMe_2CH_2O)_2$	Orange viscous liquid	(Pr'O), TiS2 POCH2CEt2CH2O	Yellow viscous liquid	$(Pr'O)_2Ti(S_2 \overline{POCH_2CEt_2CH_2O})_2$	Red sticky solid	(Pr'O)3TiS2POCHMeCHMeO	Orange viscous liquid	$(PriO)_2Ti(S_2 FOCHMeCHMeO)_2$	Red viscous liquid
		Molar ratio	1:1		1:2		1:1		1:2		1:1		1:2		1:1		1:2	
a a	Keactants (g)	HS ₂ POGO G	CMe ₂ CMe ₂	1.20	$-CMe_2CMe_2-$	1.63	-CH2CMe2CH2-	0.81	CH2CMe2CH2-	2.70	-CH2CEt2CH2-	1.06	-CH2CEt2CH2-	1.85	—СНМеСНМе—	1.09	—CHMeCHMe—	1.75
		Ti(OPr')4	1.60		1.09		1.16		1.93		1.32		1.15		1.68		1.39	
		Σο δ.	1		2.		3.		4		5.		9		7.		∞i	

* All the products are obtained in 97-99% yield. † Solidified slowly on keeping for long periods.

Downloaded At: 20:08 29 January 2011

TABLE II Some relevant IR spectral data for mixed isopropoxy titanium(IV) alkylene dithiophosphates

(
Compound	v (P)-O-C	v P-O-(C)	Ring vibrations	v P=S	v P–S	v Ti–S
(Pr'O) ₃ TiS ₂ POCMe ₂ CMe ₂ O	1140 s	860 m	s 096	ш 089	630 s 590 w	350 w
(Pr'O) ₂ Ti(S ₂ POCMe ₂ CMe ₂ O) ₂	1140 s	m 098	955 s	ш 0/9	630 s 600 m	350 w
(PrO),TiS_POCH2CMe2CH2O	1050 s	850 s	s 096	s 0/9	610 s	340 w
(PrO),Ti(S,POCH,CMe,CH,O),	1045 s	850 s	955 s	975 s	635 m	345 w
(Bu'O) ₃ TiS ₂ POCMe ₂ CMe ₂ O	1140 s	865 s	s 096	m 089	640 s 615 w	350 w
$(Bu^1O)_2Ti(S_2POCMe_2CMe_2O)_2$	1140 s	ш 098	s 096	ш 089	635 s 600 b	340 w

s = strong, m = medium, b = broad and w = weak.

The bands present in the region $1140-1050\,\mathrm{cm^{-1}}$ and $870-850\,\mathrm{cm^{-1}}$ may be assigned to v(P)-O-C and P-O-(C) stretching vibrations respectively. The bands of sharp to medium intensities in the region $960-950\,\mathrm{cm^{-1}}$ may be attributed to the ring vibrations of dioxaphospholanes and dioxaphosphorinanes which are probably coupled with C-C stretching vibrations^{14,15} and remain unchanged on complexation. A sharp band present at $680-670\,\mathrm{cm^{-1}}$ is due to v P=S vibrations. It has been observed that in all the titanium complexes, there is a small but consistent shift ($\Delta v = 20-10\,\mathrm{cm^{-1}}$) to lower frequency in the v (P=S) vibrations in comparison to the values in the corresponding free acids. This lowering is probably due to coordination of thiophosphoryl sulphur to titanium. The bands in the region $\sim 630\,\mathrm{cm^{-1}}$ and $350-340\,\mathrm{cm^{-1}}$ have been assigned to v (P-S) (symmetric and asymmetric)² and Ti-S¹³ vibrations, respectively. Formation of (Ti-S) bond is also supported by complete disappearance of v S-H band (at $\sim 2500\,\mathrm{cm^{-1}}$) in the complexes.

NMR Spectra:

The PMR spectra (Table III) of titanium(IV) alkylene dithiophosphates recorded in CCl₄ show the expected peak patterns. There is considerable overlapping of peaks due to glycoxy and isopropoxy protons. The peak due to S-H proton (present at δ 3.10-3.50 ppm in the spectra of dithiophosphoric acids)¹⁶ is expectedly absent in the corresponding titanium(IV) complexes showing the formation of Ti-S bond by deprotonation. The methylene (OCH₂—) protons in the complexes derived from 2,2-dimethyl and -diethyltrimethylene dithiophosphoric acids appear as a doublet centred in the range δ 3.77-4.04 ppm with $^3J(^1\text{H}-^{31}\text{P})=15$ Hz.

The spectra of diisopropoxytitanium bis(alkylene dithiophosphates) show the presence of only one type of isopropoxy and dithiophosphate moieties and are consistent with a *trans*-octahedral structure, if the dithiophosphate moieties are bidentate as indicated by the IR data. In the spectrum of triisopropoxytitanium mono(tetramethylethylene dithiophosphosphate), the isopropoxymethyl protons are present as two doublets centered at δ 1.10 ppm and δ 1.20 ppm (J = 7 Hz) with peak area of 2:1; the smaller doublet being in the higher field. These results indicate a trigonal bipyramidal structure for the above complex. Other triisopropoxy derivatives of this series do not show splitting of the isopropoxy methyl doublet; however, the peaks are broadened.

The ¹³C NMR spectra of tetramethylethylene dithiophosphate derivatives were measured in CCl₄ at ambient temperature (Table IV). A comparison of ¹³C chemical shift values with those found in Ti(OPr')₄ and the parent dithiophosphoric acid does not indicate any appreciable change except in the position of the secondary carbon of the isopropoxy groups. The reason for the deshielding of this carbon in the dithiophosphate complexes is not clear.

The ³¹P NMR chemical shifts of the 5- and 6-membered parent acids are 93.0-95.4 ppm and 77.8-78.6 ppm respectively, thus exhibiting the pronounced effect of ring size on ³¹P chemical shifts. ¹⁶ All the alkoxy titanium(IV) alkylene dithiophosphates exhibit a low field shift of ~15 ppm of the ³¹P signal with respect

TABLE III

1H and 31P NMR spectral data for titanium(IV) alkylene dithiophosphates

Compound	¹ H chemical shift in δppm (in CCl ₄)	³¹ P chemical shift in oppm (in CCl ₄)
Pr ⁱ O) ₃ TiS ₂ POCMe ₂ CMe ₂ O	1.10, $d(J = 7 \text{ Hz})$ 1.20, $d(J = 7 \text{ Hz})$ 1.32, s, 12H(Me ₂ C) 4.50-5.30, 3H(—CHO)	109.4
$Pr^{i}O)_{2}Ti(S_{2}\overline{POCMe_{2}CMe_{2}O})_{2}$	1.03, d(<i>J</i> = 7 Hz), 12H(<u>Me</u> ₂ CH) 1.18, s, 24H(Me ₂ O) 4.40–5.20, m, 2H(—CHO)	109.1
Pr ⁱ O) ₃ TiS ₂ POCH ₂ CMe ₂ CH ₂ O	0.88, s, $6H(Me_2C)$ 1.02, $d(J = 7 Hz)$ 18 $H(\underline{Me_2}CH)$ 1.11, $d(J = 7 Hz)$ 3.77, $d(J = 15 Hz)$, $4H(CH_2O-)$ 4.40-5.20, m, $3H(-CHO)$	94.4
Pr'O) ₂ Ti(S ₂ POCH ₂ CMe ₂ CH ₂ O) ₂	0.90, s, 12H(Me ₂ C) 1.13, d($J = 7 \text{ Hz}$), 12H(Me ₂ CH) 3.82, d($J = 15 \text{ Hz}$), 8H(—CH ₂ O) 4.50–5.30, m, 2H(—CHO)	94.6
Pr ⁱ O) ₃ TiS ₂ ÞOCH ₂ CEt ₂ CH ₂ Ò	0.96, $t(J = 6 \text{ Hz})$, $6H(Me)$ 1.23, $d(J = 7 \text{ Hz})$ 1.38, $d(J = 7 \text{ Hz})$ 1.70–1.45, q, $4H(CH_2)$ 4.04, $d(J = 15 \text{ Hz})$, $4H(CH_2O)$ 4.65–5.40, m, $3H(CHO)$	89.7
Pr ⁱ O) ₂ Ti(S ₂ POCH ₂ CEt ₂ CH ₂ O) ₂	0.92, $t(J = 6 \text{ Hz})$, $12\text{H}(\text{Me})$ 1.30, $d(J = 7 \text{ Hz})$, $12\text{H}(\frac{\text{Me}_2}{\text{CH}})$ 1.71–1.40, q , $8\text{H}(\text{CH}_2)$ 4.04, $d(J = 15 \text{ Hz})$ $8\text{H}(\text{CH}_2\text{O})$ 4.65–5.40, m, $2\text{H}(\text{CHO})$	95.9
Pr ⁱ O) ₃ TiS ₂ POCHMeCHMeO	. -	113.0
Pr ⁱ O) ₂ Ti(S ₂ POCHMeCHMeO) ₂	_	94.2, 113.4
Bu ^t O) ₃ TiS ₂ POCMe ₂ CMe ₂ O	_	108.5
Bu ^t O) ₂ Ti(S ₂ POCMe ₂ CMe ₂ O) ₂	_	109.3

s = singlet; d = doublet, t = triplet, q = quartet and m = multiplet.

to the parent acid suggesting the bidentate chelating nature of the ligand moiety. In case of the disopropoxytitanium bis(1,2-dimethylethylene dithiophosphate), the appearance of two peaks (at 94.2 and 113.4 ppm) is probably due to the presence of diastereoisomers.

The IR, NMR (¹H, ¹³C and ³¹P) and molecular weight data are thus consistent with a trigonal bipyramidal structure for triisopropoxy derivatives and a transoctahedral structure for the diisopropoxy derivatives.

With three unidentate and one bidentate substituents, the trigonal bipyramidal structure of triisopropoxy derivatives can adopt either *mer* or all-cis structure. In view of the small bite of the dithiophosphate ligands forming 4-membered rings with the metal atom, the latter structure in which the dithiophosphate moiety occupies the axial-equatorial positions should be preferred. This conclusion finds

Downloaded At: 20:08 29 January 2011

TABLE IV $$^{13}{\rm C}\,{\rm NMR}$ spectral data for mixed alkoxytitanium(IV) alkylene dithiophosphates

		13C Chen	¹³ C Chemical shift, in δppm	
	Isopropoxy o	Isopropoxy or tert-butoxy	Alkylene dithiophosphates†	phosphates†
Compound	СН3	ОСН	20	CH ₃
Ti[(OCH(CH ₃) ₂] ₄	24.65	74.33	1	
HS, FOC(CH,), C(CH,), O	1	I	90.15 (J = 2.44 Hz)	90.15 (J = 2.44 Hz) 24.21 $(J = 4.88 Hz)$
[(CH ₃) ₂ CHO] ₃ TiS ₂ POC(CH ₃) ₂ C(CH ₃) ₂ O	25.19	83.37	88.73	24.26 (J = 2.44 Hz)
$[(CH_3)_2CHO]_2Ti(S_2POC(CH_3)_2C(CH_3)_2O]_2$	25.12	83.25	88.94	24.36 (J = 2.44 Hz)
[(CH ₃) ₃ CO] ₃ TiS ₂ POC(CH ₃) ₂ C(CH ₃) ₂ O	31.15	*	88.30	24.05
[(CH ₃) ₃ CO] ₂ Ti[S ₂ POC(CH ₃) ₂ C(CH ₃) ₂ O] ₂	31.20	*	88.40 (J = 2.44 Hz)	88.40 $(J = 2.44 \text{ Hz})$ 24.27 $(J = 2.44 \text{ Hz})$

* The peak due to the tertiary carbon of the tert-butoxy group could not be observed. † Coupling with phosphorus was observed in some cases; the J values are given.

Trigonal bipyramidal

Trans-octobedral

further support from the recently reported X-ray crystallographic structural determinations of triphenyltin tetramethylethylene dithiophosphate.¹⁷ 5-Coordinate titanium complexes are rather rare and although their formation has been reported in several reactions,¹⁸ detailed structural analyses do not appear to have been carried out.

Octahedral titanium complexes with two bidentate and two unidentate ligands generally adopt cis-arrangement. ^{19,20} In the present cases of disopropoxytitanium bis(dithiophosphates), however, the cis structure may be sterically too crowded. It may, however, be pointed out that anisobidentate binding of dithiophosphate moieties with metal atoms is quite common as shown by X-ray crystallographic data^{17,21} of various organotin complexes.

Titanium alkoxides tend to form adducts with amines,^{22,23} probably with the breaking of oxy bridges. Adduct formation tendency appears to be reduced in disopropoxytitanium bis(alkylene dithiophosphate); thus the addition of two moles of pyridine to $(Pr^iO)_2Ti(S_2\overline{POCMe_2CMe_2O})_2$ in benzene does not show any change in ³¹P chemical shift (being observed at 108.4 ppm). However, when the complex is dissolved in excess of pyridine, the ³¹P signal shifts to 123.8 ppm, a position reported earlier for tetramethyldithiophosphate anion.¹⁰

³¹P NMR spectral data have also been used to study co-disproportionation reactions between Ti(OPrⁱ)₄ and Ti(S₂POCMe₂CMe₂O)₄ (obtained from TiCl₄). ¹⁰ The product obtained by heating an equimolar mixture in benzene shows a chemical shift of 109.1 ppm indicating the quantitative formation of the mixed derivative (PrⁱO)₂Ti(S₂POCMe₂CMe₂O)₂.

EXPERIMENTAL

Stringent precautions were taken to exclude moisture during experimental manipulations. Titanium tetraisopropoxide²⁴ and alkylene dithiophosphoric acids¹⁶ were prepared by the methods reported in literature. Sulphur and titanium were estimated gravimetrically as barium sulphate (Messenger's method) and titanium oxide (Cupferron method), respectively. Isopropanol was estimated by the potassium dichromate oxidation method.²⁵

Molecular weights were determined cryoscopically in benzene. IR spectra were recorded as neat liquids or nujol mulls on a Perkin-Elmer 577 spectrometer in the range 4000-200 cm⁻¹ using CsI cells. ¹H NMR spectra were recorded in carbon tetrachloride on a Perkin-Elmer R 12 B spectrometer using TMS as an external standard. ³¹P and ¹³C NMR spectra were recorded in carbon tetrachloride on Jeol FX 90Q spectrometer using H₃PO₄ and TMS as an external standard, respectively.

Methods of Preparation

(a) Reactions of titanium(IV) isopropoxide with alkylene dithiophosphoric acids in different molar ratios:

A mixture of titanium isopropoxide and alkylene dithiophosphoric acid in anhydrous benzene in different molar ratios (1:1 and 1:2) was refluxed on a fractionating column for ~3 hrs and isopropanol liberated during the course of the reaction was collected azeotropically with benzene and estimated. Removal of the excess solvent yielded the desired product.

Analytical and other relevant data for these experiments are given in Table I.

(b) Reaction of triisopropoxytitanium(IV) tetramethyl ethylenedithiophosphate with excess of tertiary butanol:

To a benzene solution (\sim 40 ml) of (Pr^iO)₃TiS₂ $\overrightarrow{POCMe_2CMe_2O}$ (1.38 g) was added Bu'OH (1.86 g) and the reaction mixture was refluxed (\sim 12 hrs) with continuous azeotropic removal of liberated isopropanol (Found: 0.53 g, Calcd.: 0.57 g), until the reaction was complete (as indicated by absence of isopropanol in azeotrope). Removal of the excess of solvent and drying the residue under reduced pressure left a yellow semi-solid product (1.50 g, 99%), which was purified by washing with *n*-hexane. Found: Ti, 10.13; S, 13.40; Calcd. for $C_{18}H_{39}O_5PS_2Ti$: Ti, 10.02; S, 13.39%.

(c) Reaction of disopropoxytitanium(IV) bis(tetramethylethylene dithiophosphate) with excess of tertiary butanol:

The reaction of $(Pr^iO)_2Ti(S_2POCMe_2CMe_2O)_2$ (1.67 g) in ~50 ml benzene with Bu^tOH (1.82 g) carried out as above, gave isopropanol (Found: 0.33 g, Calcd: 0.34 g) in the azeotrope and the product (1.71 g, 97.7%) as a yellow semi-solid. Found: Ti, 7.81; S, 20.84; Calcd. for $C_{20}H_{42}O_6P_2S_4Ti$: Ti, 7.77; S, 20.78%.

ACKNOWLEDGEMENT

One of the authors (J.S.Y.) is grateful to the C.S.I.R., New Delhi for the award of a Junior Research Fellowship.

REFERENCES

- 1. J. R. Wasson, G. M. Woltermann and H. J. Stocklosa, Topics in Current Chemistry, 35, 65 (1973).
- 2. C. P. Bhasin, G. Srivastava and R. C. Mehrotra, Inorg. Chim. Acta, 77, L137 (1983).
- 3. H. P. S. Chauhan, G. Srivastava and R. C. Mehrotra, Phosphorus and Sulfur, 17, 161 (1983).
- 4. R. C. Mehrotra, G. Srivastava and B. P. S. Chauhan, Coord. Chem. Rev., 55, 207 (1984).
- 5. R. J. Rao, G. Srivastava, R. C. Mehrotra, B. S. Saraswat and J. Mason, *Polyhedron*, 3, 485 (1984).
- 6. R. J. Rao, G. Srivastava and R. C. Mehrotra, Phosphorus and Sulfur, 25, 183 (1985).
- 7. D. C. Bradley and M. H. Gillitz, J. Chem. Soc. (A), 1152 (1969).
- 8. D. Coucouvanis, Progr. Inorg. Chem. 11, 233 (1970); 26, 301 (1979).
- 9. O. P. Pandey, S. K. Sengupta and S. C. Tripathi, Polyhedron, 3, 695 (1984).
- 10. J. S. Yadav, R. K. Mehrotra and G. Srivastava, Polyhedron, in press.
- 11. D. E. C. Corbridge, Topics in Phorphorous Chemistry, M. Grayson and E. J. Griffith, eds, John Wiley & Sons, N.Y., Vol. 6, 235 (1969).
- E. C. Alyea, B. S. Ramaswamy, A. N. Bhat and R. C. Fay, *Inorg. Nucl. Chem. Lett.*, 9, 399 (1973).
- 13. S. Kumar and N. K. Kaushik, Synth. React. Inorg. Met.-Org. Chem., 12, 159 (1982).
- 14. J. Casdeon, W. N. Baxter and W. De Acetis, J. Org. Chem., 24, 247 (1959).
- 15. R. A. Y. Jones and A. R. Katritzky, J. Chem. Soc., 4376 (1960).

- 16. H. P. S. Chauhan, C. P. Bhasin, G. Srivastava and R. C. Mehrotra, Phosphorus and Sulfur, 15, 99 (1983).
- 17. H. Preut, V.-D. Ngo and F. Huber, Acta Cryst., 1987, in press.
- 18. N. Serpone, P. H. Bird, A. Somogyvari and D. G. Bickley, *Inorg. Chem.*, 16, 2381 (1977).
- 19. D. C. Bradley and C. E. Holloway, J. Chem. Soc. (A), 282 (1969).
- 20. R. C. Fay and R. N. Lowry, Inorg. Chem., 6, 1512 (1967).
- 21. H. Preut, V.-D. Ngo and F. Huber, Acta Cryst., C42, 809 (1986).
- 22. C. M. Cook Jr., J. Amer. Chem. Soc., 81, 3828 (1959).
- 23. R. C. Paul, H. C. Makhni, P. Singh and S. L. Chadha, J. Less-Common Metals, 17, 437 (1969).
- D. C. Bradley, R. C. Mehrotra and W. Wardlaw, J. Chem. Soc., 2027 (1952).
 D. C. Bradley, F. M. A. Halim and W. Wardlaw, J. Chem. Soc., 3450 (1950).